Cell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2.
نویسندگان
چکیده
Hereditary nonpolyposis colorectal cancer is a cancer susceptibility syndrome that has been found to be caused by mutations in any of several genes involved in DNA mismatch repair, including hMSH2, hMLH1, or hPMS2. Recent reports have suggested that hMSH2 and hMLH1 have a role in the regulation of the cell cycle. To determine if these genes are cell cycle regulated, we examined their mRNA and protein levels throughout the cell cycle in IMR-90 normal human lung fibroblasts. We demonstrate that the levels of hMSH2 mRNA and protein do not change appreciably throughout the cell cycle. Although hMLH1 mRNA levels remained constant, there was a modest (approximately 50%) increase in its protein levels during late G1 and S phase. The levels of hPMS2 mRNA fluctuated (decreasing 50% in G1 and increasing 50% in S phase), whereas hPMS2 protein levels increased 50% in late G1 and S phase. Our data indicate that, at least in normal cells, the machinery responsible for the detection and repair of mismatched DNA bases is present throughout the cell cycle.
منابع مشابه
Apoptosis induced by overexpression of hMSH2 or hMLH1.
Mutations of the mismatch repair genes hMSH2 and hMLH1 have been found in a high proportion of individuals with hereditary nonpolyposis colon cancer (HNPCC), establishing the link between mismatch repair and cancer. Tumor cell lines that are deficient in mismatch repair develop a mutator phenotype that appears to drive the accumulation of mutations required for tumor development. However, mutat...
متن کاملSteady-state Regulation of the Human DNA
Steady-state levels of human DNA mismatch repair (MMR) transcripts and proteins were measured in MMR-proficient and -deficient cell lines by the newly developed competitive quantitative reverse transcriptionpolymerase chain reaction and Western analysis normalized with purified proteins. In MMR-proficient cells, hMSH2 is the most abundant MMR protein and is expressed 3 to 5 times more than hMLH...
متن کاملTransient mismatch repair gene transfection for functional analysis of genetic hMLH1 and hMSH2 variants.
BACKGROUND Germline mutations in the mismatch repair (MMR) genes hMLH1 and hMSH2 can cause hereditary non-polyposis colorectal cancer (HNPCC). However, the functional in vitro analysis of hMLH1 and hMSH2 mutations remains difficult. AIMS To establish an in vitro method for the functional characterisation of hMLH1 and hMSH2 mutations. METHODS hMLH1 and hMSH2 wild type (wt) genes and several ...
متن کاملGASTROINTESTINAL CANCER Transient mismatch repair gene transfection for functional analysis of genetic hMLH1 and hMSH2 variants
Background: Germline mutations in the mismatch repair (MMR) genes hMLH1 and hMSH2 can cause hereditary non-polyposis colorectal cancer (HNPCC). However, the functional in vitro analysis of hMLH1 and hMSH2 mutations remains difficult. Aims: To establish an in vitro method for the functional characterisation of hMLH1 and hMSH2 mutations. Methods: hMLH1 and hMSH2 wild type (wt) genes and several m...
متن کاملSteady-state regulation of the human DNA mismatch repair system.
Steady-state levels of human DNA mismatch repair (MMR) transcripts and proteins were measured in MMR-proficient and -deficient cell lines by the newly developed competitive quantitative reverse transcription- polymerase chain reaction and Western analysis normalized with purified proteins. In MMR-proficient cells, hMSH2 is the most abundant MMR protein and is expressed 3 to 5 times more than hM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 57 2 شماره
صفحات -
تاریخ انتشار 1997